Storage-Centric Computing for Genomics and Metagenomics

Nika Mansouri Ghiasi

n.mansorighiasi@gmail.com

Brief Self Introduction

 A PhD student at the SAFARI Research Group @ ETH Zurich, advised by Professor Onur Mutlu

Research interests:

- Computer architecture
- Large-scale bioinformatics applications
- Storage systems
- Near data processing
- Emerging technologies such as ultra-dense 3D integrated systems

Contact information

- Email: n.mansorighiasi@gmail.com
- Personal website: https://bit.ly/nikamgh

Outline

Brief Intro to (Meta)Genomics

- Storage-Centric Designs for (Meta)Genomics
 - GenStore
 - MegIS

Conclusion

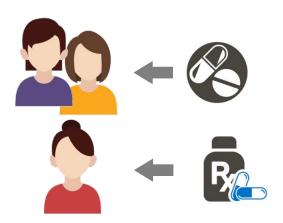
Outline

Brief Intro to (Meta)Genomics

- Storage-Centric Designs for (Meta)Genomics
 - GenStore
 - MegIS

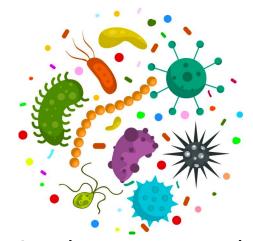
Conclusion

Genomics and Metagenomics are Critical for Many Applications



Developing personalized medicine

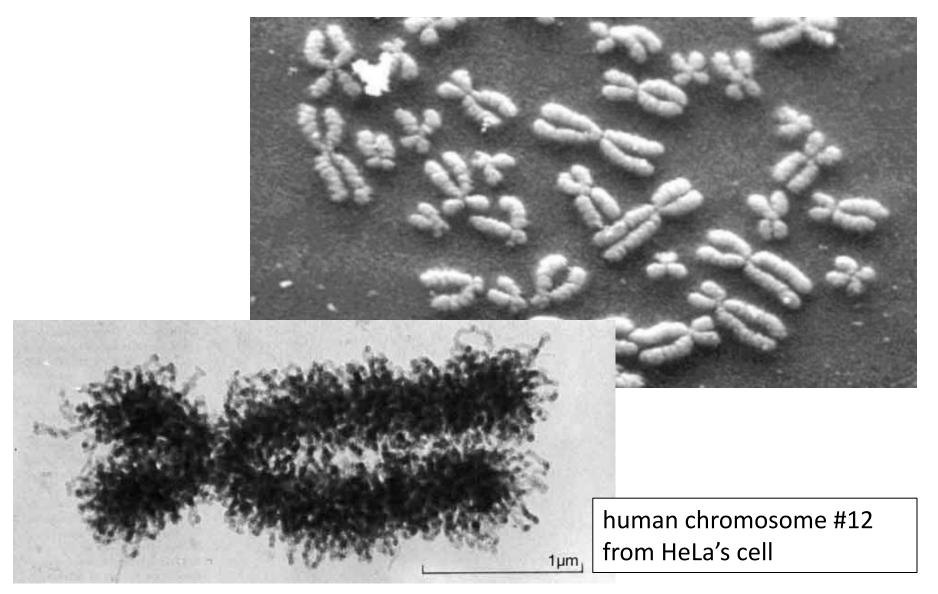
Rapid surveillance of **disease outbreaks**



Predicting the presence and relative abundance of **microbes** in a sample

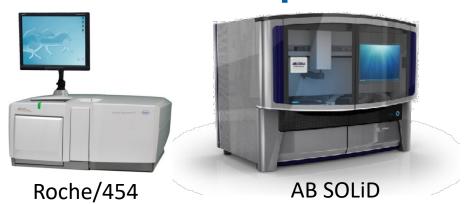
Understanding genetic variations, species, evolution, ...

DNA Under Electron Microscope



CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG AGAAAAGAAAAGAATTTAAAATTTAAGTAATTCTTTGAA AAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATG TGCTAAACAGCACTTTTTTGACCATTATTTTTGGATCTGAAA GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA AAGAAAAGAAAAGAATTTAAAATTTAAGTAATTCTTTGA **AAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAAT** GTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGA AAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTA ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG

Genome Sequencers



Illumina HiSeq2000

SAFARI Ion Torrent PGM

Pacific Biosciences RS

Ion Torrent Proton

Illumina MiSeq

Complete Genomics

Oxford Nanopore MinION

Illumina NovaSeq 6000

Oxford Nanopore GridION

... and more! All produce data with 8 different properties.

High-Throughput Sequencers

Illumina MiSeq

Illumina NovaSeq 6000

Pacific Biosciences Sequel II

Pacific Biosciences RS II

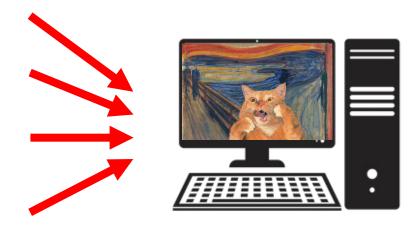
Oxford Nanopore MinION

... and more! All produce data with different properties.

Problems with (Meta)Genome Analysis Today



FAST



General-Purpose Machine for **Data Analysis**

SLOW

Genome Sequence Analysis

Data Movement

Storage System Main Memory Cache

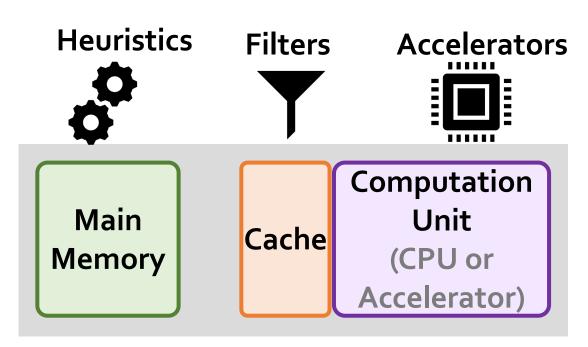
Computation
Unit
(CPU or
Accelerator)

Computation overhead

Data movement overhead

Accelerating Genome Analysis

Storage System

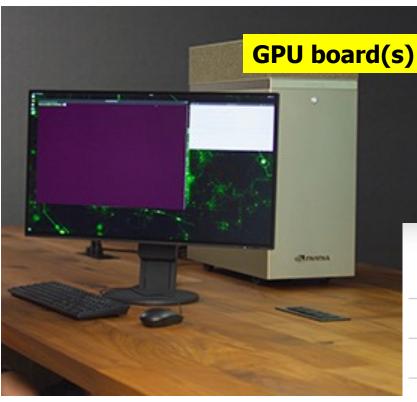


Illumina DRAGEN Bio-IT Platform (2018)

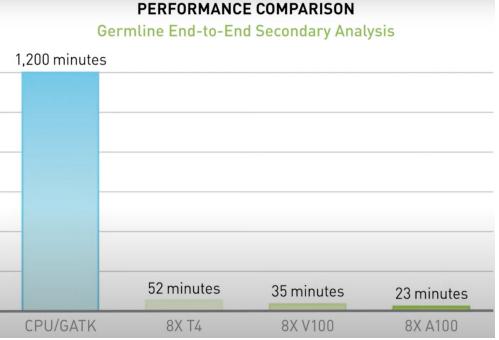
 Processes whole genome at 30x coverage in ~25 minutes with hardware support for data compression

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html emea.illumina.com/company/news-center/press-releases/2018/2349147.html

NVIDIA Clara Parabricks (2020)



A University of Michigan startup in 2018 joined NVIDIA in 2020



NVIDIA Hopper DPX Instructions (2022)

NVIDIA Hopper GPU Architecture Accelerates Dynamic Programming Up to 40x Using New DPX Instructions

Dynamic programming algorithms are used in healthcare, robotics, quantum computing, data science and more.

March 22, 2022 by DION HARRIS

 We are accelerating the transformation in how we analyze the human genome!

Bionano & NVIDIA: Accelerating Analysis for Fast Time to Results

Technological solution to **support higher throughput**

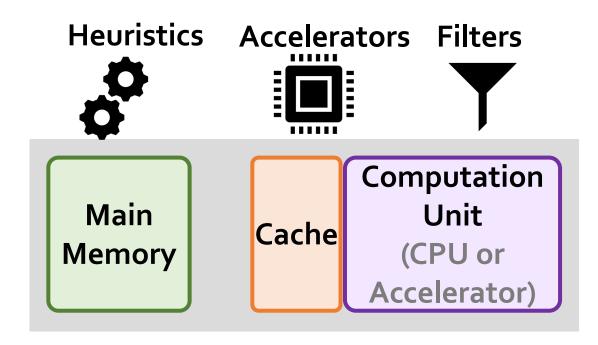
New high-performance algorithms from Bionano

Powered by NVIDIA RTX™ 6000 Ada Generation GPUs

Workflow tailored for a small lab and IT footprint

Accelerating Genome Sequence Analysis

Storage System

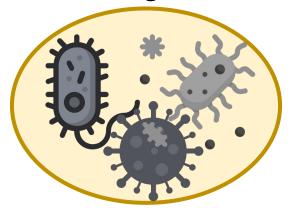


Computation overhead

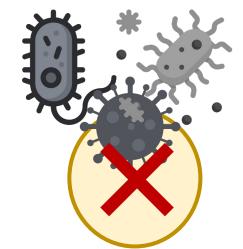
Data movement overhead

What is Metagenomics?

 <u>Metagenomics</u>: Study of genome sequences of diverse organisms within a shared environment (e.g., blood, ocean, soil)

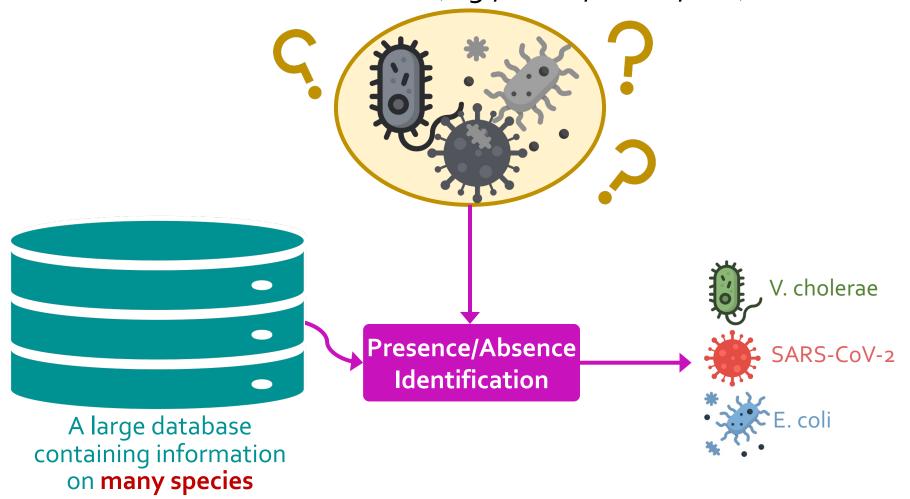


- Overcomes the limitations of traditional genomics
 - Bypasses the need for analyzing individual species in isolation



What is Metagenomics?

 <u>Metagenomics</u>: Study of genome sequences of diverse organisms within a shared environment (e.g., blood, ocean, soil)



Outline

Brief Intro to (Meta)Genomics

- Storage-Centric Designs for (Meta)Genomics
 - GenStore
 - MegIS

Conclusion

GenStore [ASPLOS'22]

GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto

GenStore

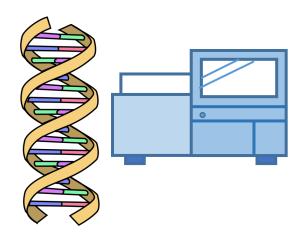
A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

SAFARI

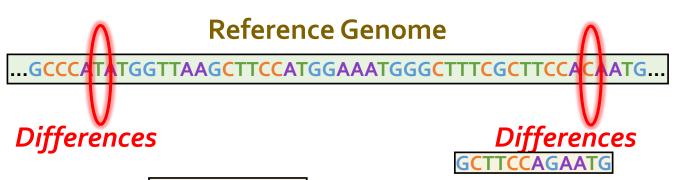
Genome Sequence Analysis

- Genome sequence analysis is critical for many applications
 - Personalized medicine
 - Outbreak tracing
 - Evolutionary studies
- Genome sequencing machines extract smaller fragments of the original DNA sequence, known as reads



Genome Sequence Analysis

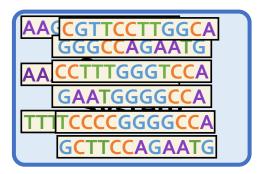
- Read mapping: first key step in genome sequence analysis
 - Aligns reads to potential matching locations in the reference genome
 - For each matching location, the alignment step finds the degree of similarity (alignment score)



- Calculating the alignment score requires computationally-expensive approximate string matching (ASM) to account for differences between reads and the reference genome due to:
 - Sequencing errors
 - Genetic variation

Key Idea

Filter reads that do not require alignment inside the storage system



Main Memory Cache Computation
Unit
(CPU or
Accelerator)

Filtered Reads

Exactly-matching reads

Do not need expensive approximate string matching during alignment

Non-matching reads

Do not have potential matching locations and can skip alignment

Challenges

Filter reads that do not require alignment inside the storage system

Storage System

Filtered Reads

Main Memory Cache Computation
Unit
(CPU or
Accelerator)

Read mapping workloads can exhibit different behavior

There are limited hardware resources in the storage system

GenStore

Filter reads that do not require alignment inside the storage system

GenStore-Enabled Storage System

Main Memory Cache

Computation
Unit
(CPU or
Accelerator)

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and energy reduction (3.9x - 29.2x) at low cost

Outline

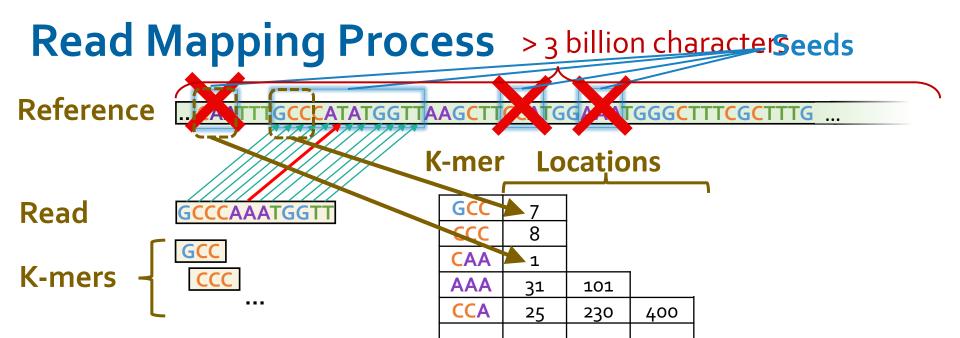
Background

Motivation and Goal

GenStore

Evaluation

Conclusions



Seeding

Determine potential matching locations (seeds) in the reference genome

Index

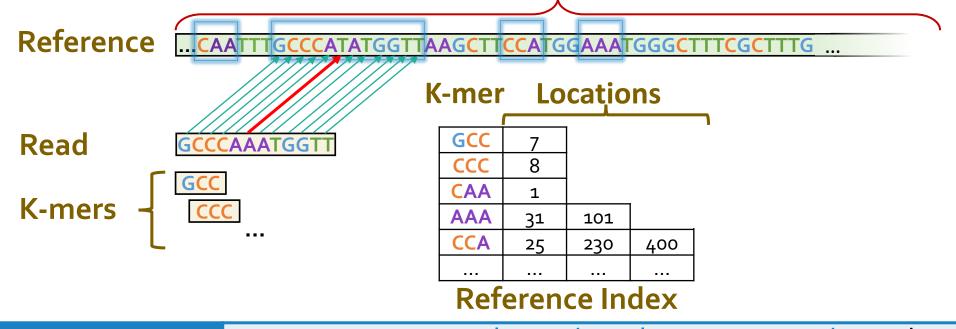
Seed Filtering (e.g., Chaining)

Prune some seeds in the reference genome

Alignment

Determine the exact differences between the read and the reference genome

Read Mapping Process > 3 billion characters



Seeding

Determine potential matching locations (seeds) in the reference genome

Seed Filtering (e.g., Chaining)

Prune some seeds in the reference genome

Alignment

Determine the exact differences between the read and the reference genome

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Motivation

- Case study on a real-world genomic read dataset
 - Various read mapping systems
 - Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

- 1) reducing the computation overhead
- 2) reducing the data movement overhead

Motivation

- Case study on a real-world genomic read dataset
 - Various read mapping systems
 - Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it

- 1) does not reduce the data movement overhead
- 2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck, which makes I/O a larger bottleneck in the system

Our Goal

Design an in-storage filter for genome sequence analysis in a cost-effective manner

Design Objectives:

Performance

Provide high in-storage filtering performance to overlap the filtering with the read mapping of unfiltered data

Applicability

Support reads with 1) different properties and 2) different degrees of genetic variation in the compared genomes

Low-cost

Do not require significant hardware overhead

Outline

Background

Motivation and Goal

GenStore

Evaluation

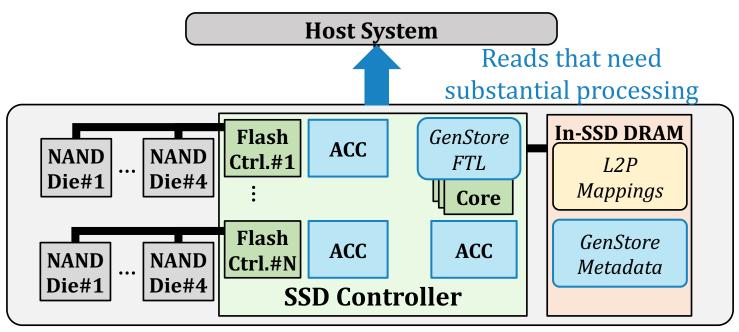
Conclusions

GenStore

 Key idea: Filter reads that do not require alignment inside the storage system

Challenges

- Different behavior across read mapping workloads
- Limited hardware resources in the SSD



Filtering Opportunities

- Sequencing machines produce one of two kinds of reads
 - Short reads: highly accurate and short
 - Long reads: less accurate and long

Reads that do not require the expensive alignment step:

Exactly-matching reads

Do not need expensive approximate string matching during alignment

- Low sequencing error rates (short reads) combined with
- Low genetic variation

Non-matching reads

Do not have potential matching locations, so they skip alignment

- High sequencing error rates (long reads) or
- High genetic variation (short or long reads)

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

GenStore-EM

- Efficient in-storage filter for reads with at least one exact match in the reference genome
- Uses simple operations, without requiring alignment
- Challenge: large number of random accesses per read to the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

GenStore-EM: Data Structures

 Read-sized k-mers: to reduce the number of accesses per each read

 Sorted read-sized k-mers: to avoid random accesses to the index

Sequential scan of the read set and the index

GenStore-EM: Data Structures

Sorted Read Table

Read	
AAAAAAAAA	
AAAAAAAAG	
AAAAAAAACT	
•••	

Sorted

Sorted K-mer Index

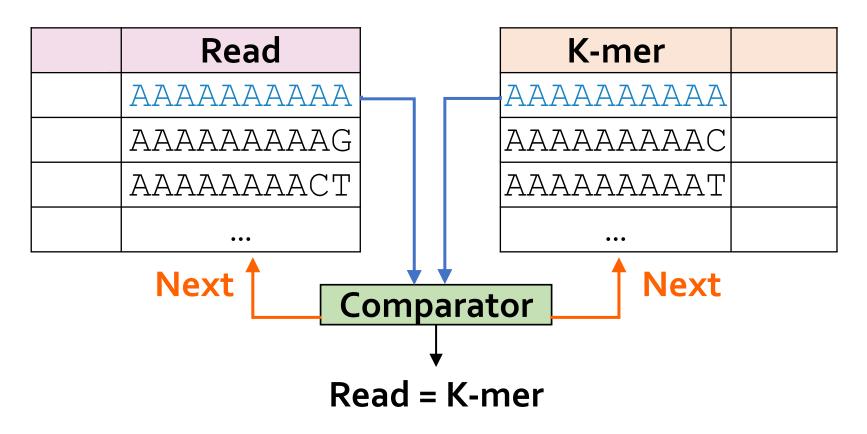
K-mer	
AAAAAAAAA	
AAAAAAAAC	
AAAAAAAAT	
•••	

Read-sized K-mers

GenStore-EM: Finding a Match

Sorted Read Table

Sorted K-mer Index

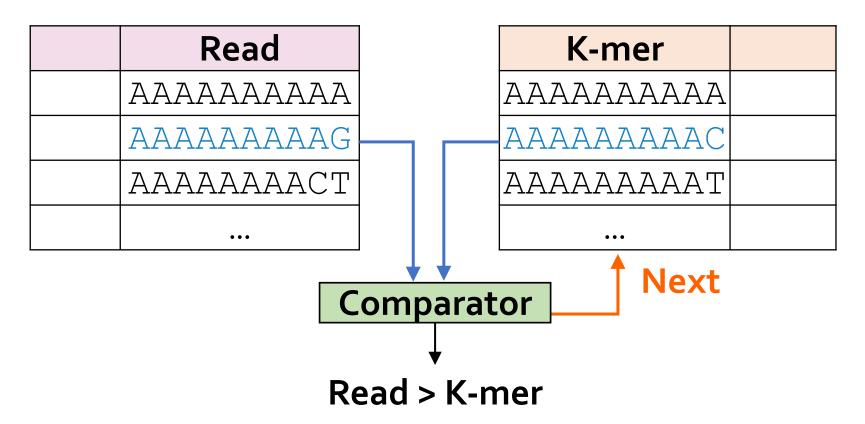


Exact match -> Filter the read

GenStore-EM: Not Finding a Match

Sorted Read Table

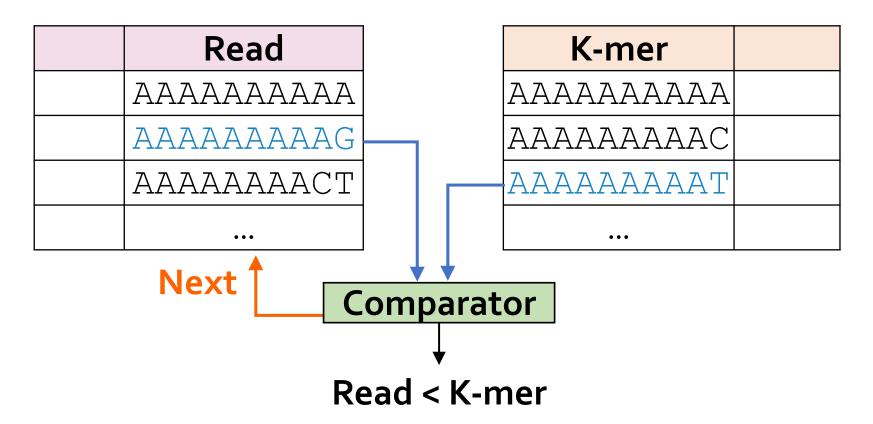
Sorted K-mer Index



GenStore-EM: Not Finding a Match

Sorted Read Table

Sorted K-mer Index



Not an exact match → Send to read mapper

GenStore-EM: Not Finding a Match

Sorted Read Table

Sorted K-mer Index

Avoids random accesses

Simple low-cost logic

Read < K-mer

Not an exact match -> Send to read mapper

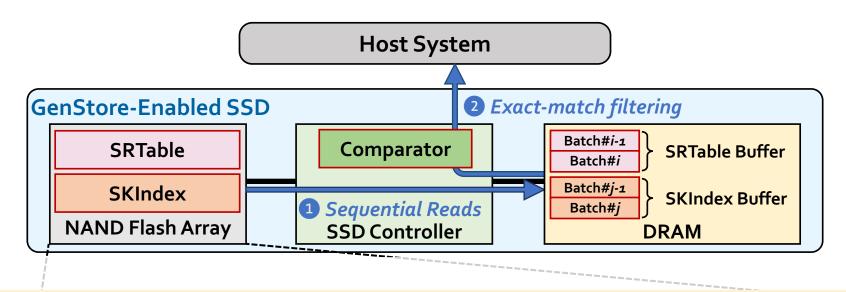
GenStore-EM: Optimization

 Read-sized k-mer index takes up a large amount of space (126 GB for human index) due to the larger number of unique k-mers
 Sorted K-mer Index

Strong Hash Value	Loc.
1	1, 8,
4	51
7	23, 37
16	

Using strong hash values instead of read-sized k-mers reduces the size of the index by 3.9x

GenStore-EM: Design



Steps 1 and 2 are pipelined.

During filtering, GenStore-EM sends the unfiltered reads to the host system.

Data is evenly distributed between channels, dies, and planes to leverage the full internal bandwidth of the SSD

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

Details on GenStore-NM's design are in the paper

Outline

Background

Motivation and Goal

GenStore

Evaluation

Conclusions

Evaluation Methodology

Read Mappers

- Base: state-of-the-art software or hardware read mappers
 - Minimap2 [Bioinformatics'18]: software mapper for short and long reads
 - GenCache [MICRO'19]: hardware mapper for short reads
 - Darwin [ASPLOS'18]: hardware mapper for long reads
- GS: Base integrated with GenStore

SSD Configurations

- SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)
- SSD-M: with PCle Gen3 interface (3.5 GB/s sequential read bandwidth)
- SSD-H: with PCle Gen4 interface (7 GB/s sequential read bandwidth)

Performance – GenStore-EM

For a read set with 80% exactly-matching reads

With the Software Mapper

Executive Section 100 Base GS Base GS Base GS SSD-H SSD-H

8 6 4 2 0 Base GS Base GS

SSD-M

SSD-L

With the Hardware Mapper

2.1× - 2.5× speedup compared to the software Base

 $1.5 \times -3.3 \times$ speedup compared to the hardware Base

On average 3.92× energy reduction

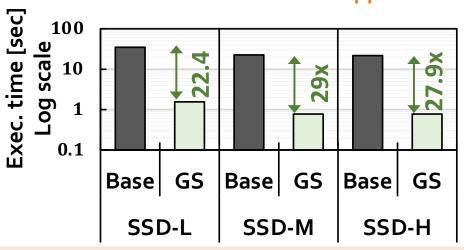
SSD-H

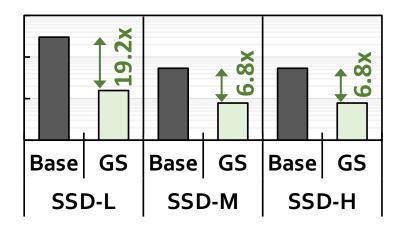
Performance – GenStore-NM

For a read set with 99.7% non-matching reads

With the Software Mapper

With the Hardware Mapper





22.4× – 27.9× speedup compared to the software Base

6.8× - 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

More in the Paper

- Effect of read set features on performance
 - Data size (up to 440 GB)
 - Filter ratio
- Performance benefit of an implementation of GenStore outside the SSD
 - In some cases, it provides performance benefits due more efficient streaming accesses
 - Provides significantly lower benefit compared to GenStore
- More detailed characterization of non-matching reads across different read mapping use cases and species

GenStore

A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

SAFARI

Outline

Brief Intro to (Meta)Genomics

- Storage-Centric Designs for (Meta)Genomics
 - GenStore
 - MegIS

Conclusion

MegIS [ISCA'24]

MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi¹ Mohammad Sadrosadati¹ Harun Mustafa¹ Arvid Gollwitzer¹ Can Firtina¹ Julien Eudine¹ Haiyu Mao¹ Joël Lindegger¹ Meryem Banu Cavlak¹ Mohammed Alser¹ Jisung Park² Onur Mutlu¹

¹ETH Zürich ²POSTECH

MegIS

High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

Nika Mansouri Ghiasi

Mohammad Sadrosadati Harun Mustafa Arvid Gollwitzer Can Firtina

Julien Eudine Haiyu Mao Joël Lindegger Meryem Banu Cavlak

Mohammed Alser Jisung Park Onur Mutlu

SAFARI

Outline

Background

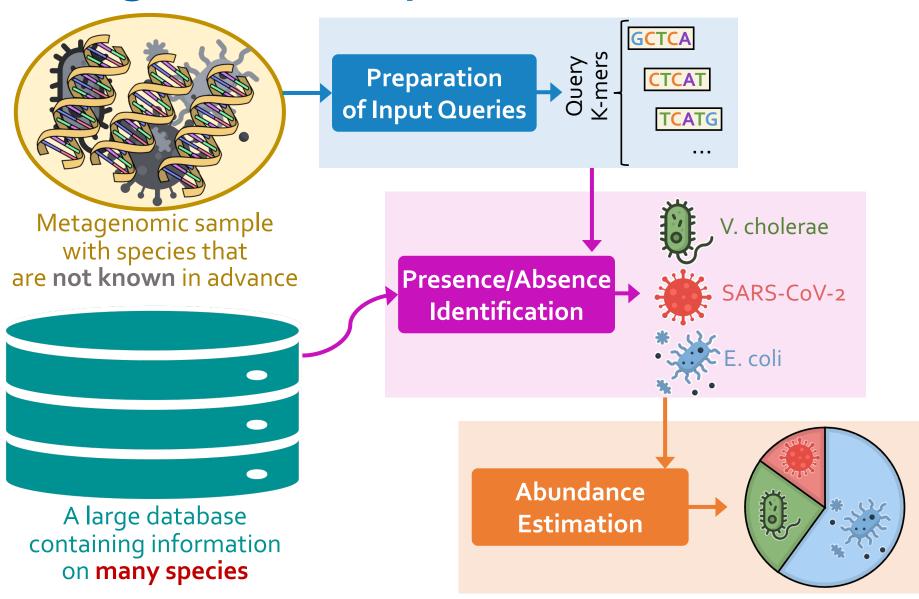
Motivation and Goal

MeglS

Evaluation

Conclusion

Metagenomic Analysis



SAFARI (e.g., > 100 TBs in emerging databases)

Outline

Background

Motivation and Goal

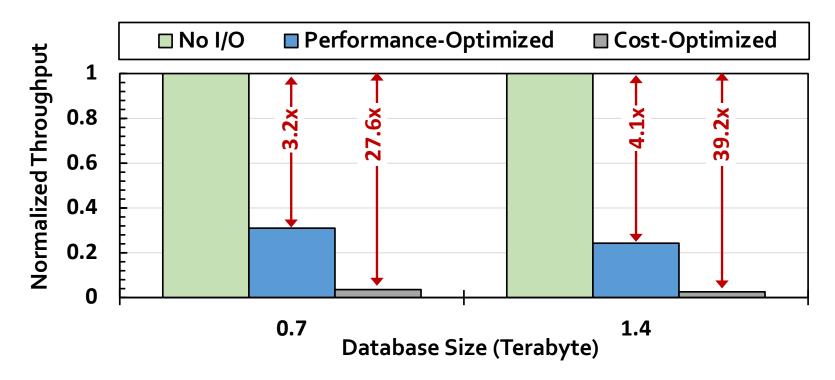
|MegIS

Evaluation

Conclusion

Motivation

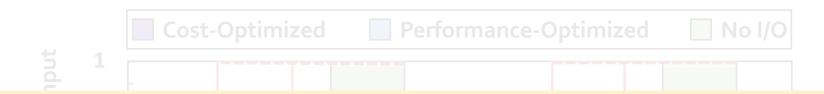
- Case study of the performance of metagenomic analysis tools
- With various state-of-the-art SSD configurations



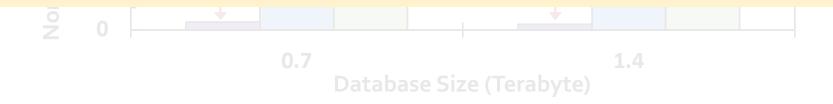
I/O data movement causes significant performance overhead

Motivation

- Case study on the throughput of metagenomic analysis tools
- With Various state-of-the-art SSD configurations



I/O becomes an even larger overhead (by 2.7x) in systems where other bottlenecks are alleviated



I/O data movement causes significant performance overhead

I/O Overhead is Hard to Avoid

I/O overhead due to accessing large, low-reuse data is hard to avoid

Sampling techniques to shrink database sizes

[Wood+, Genome Biology'19], [Ounit+, BMC Genomics'15], [Kim+, Genome Research'16], ...

Keeping all data required by metagenomic analysis completely and always resident in main memory

- Energy inefficient, costly, unscalable, and unsustainable
 - Database sizes increase rapidly (doubling every few months)
 - Different analyses need different databases

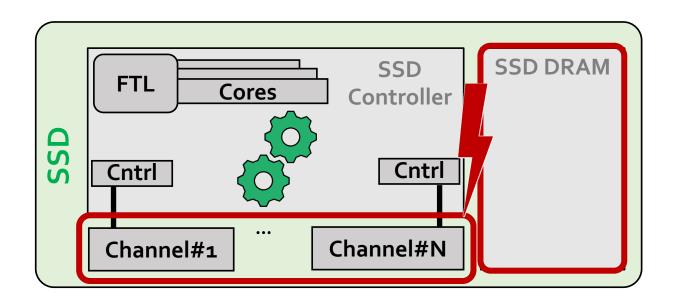
Our Goal

Improve metagenomic analysis performance by reducing large data movement overhead from the storage system in a cost-effective manner and with high accuracy

Challenges of In-Storage Processing

No metagenomic analysis tools can run in-storage due to SSD limits

- Long latency of NAND flash chips
- Limited **DRAM capacity** inside the SSD
- Limited **DRAM bandwidth** inside the SSD



Outline

Background

Motivation and Goal

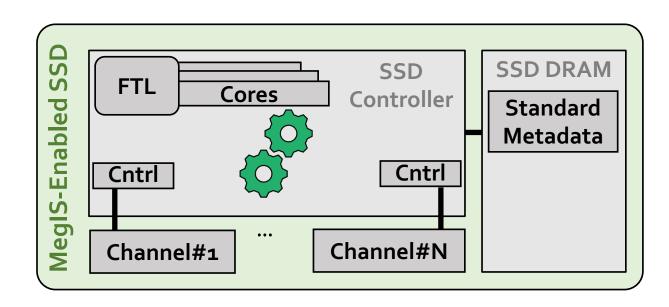
MegIS

Evaluation

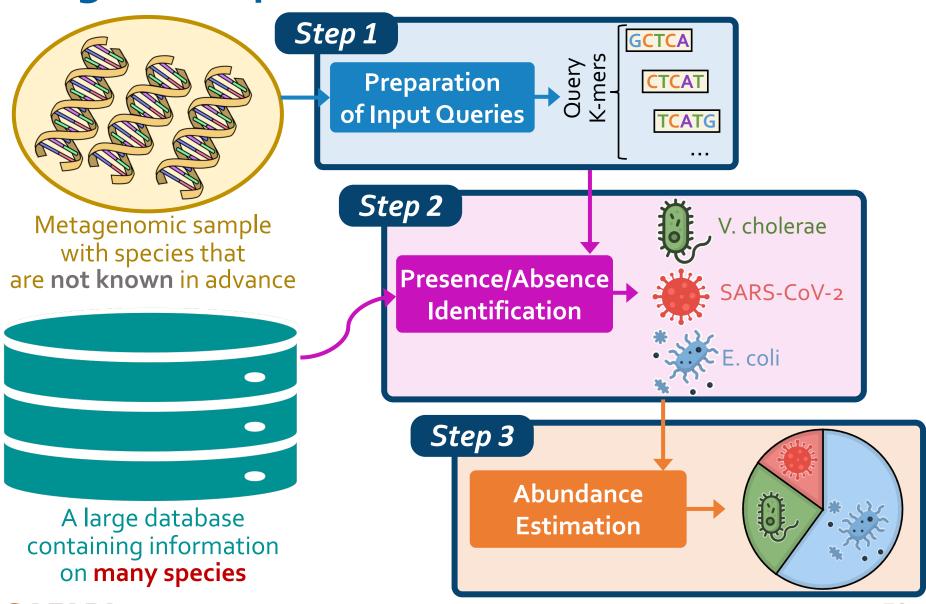
Conclusion

MegIS: Metagenomics In-Storage

- First in-storage system for end-to-end metagenomic analysis
- Idea: Cooperative in-storage processing for metagenomic analysis
 - Hardware/software co-design between



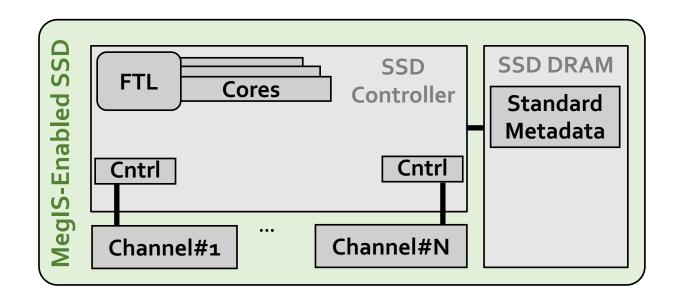
MegIS's Steps



SAFARI

MegIS Hardware-Software Co-Design

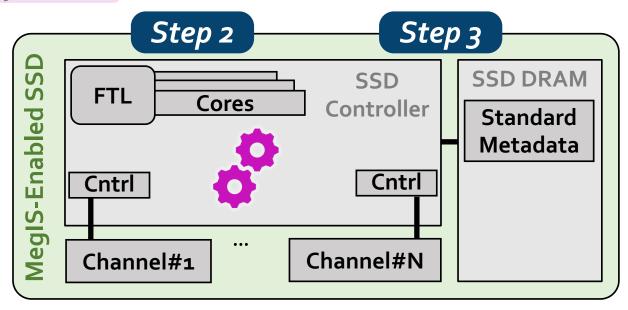
Host System



MegIS Hardware-Software Co-Design

Task partitioning and mapping

• Each step executes in its most suitable system



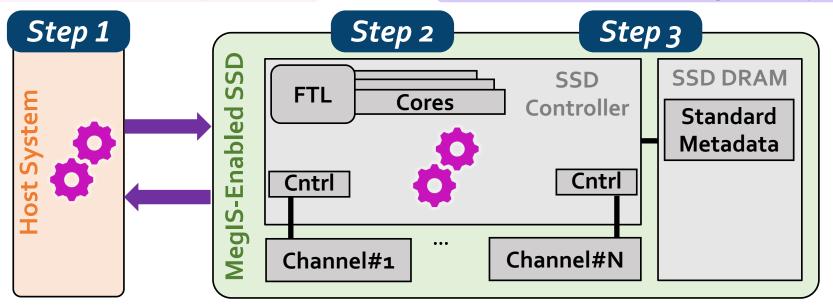
MegIS Hardware-Software Co-Design

Task partitioning and mapping

• Each step executes in its most suitable system

Data/computation flow coordination

- Reduce communication overhead
 - Reduce #writes to flash chips



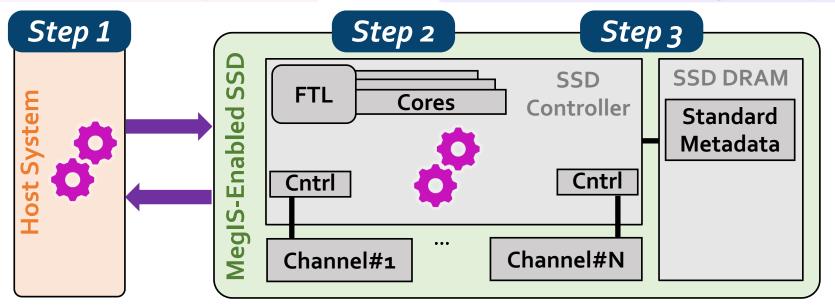
MegIS Hardware-Software Co-Design

Task partitioning and mapping

• Each step executes in its most suitable system

Data/computation flow coordination

- Reduce communication overhead
 - Reduce #writes to flash chips



Storage-aware algorithms

• Enable efficient access patterns to the SSD

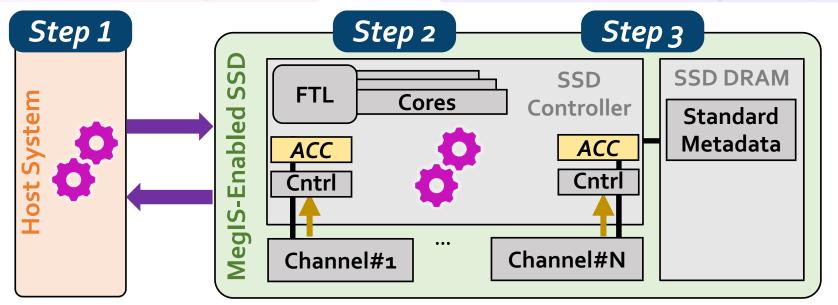
MegIS Hardware-Software Co-Design

Task partitioning and mapping

• Each step executes in its most suitable system

Data/computation flow coordination

- Reduce communication overhead
 - Reduce #writes to flash chips



Storage-aware algorithms

• Enable efficient access patterns to the SSD

Lightweight in-storage accelerators

 Minimize SRAM/DRAM buffer spaces needed inside the SSD

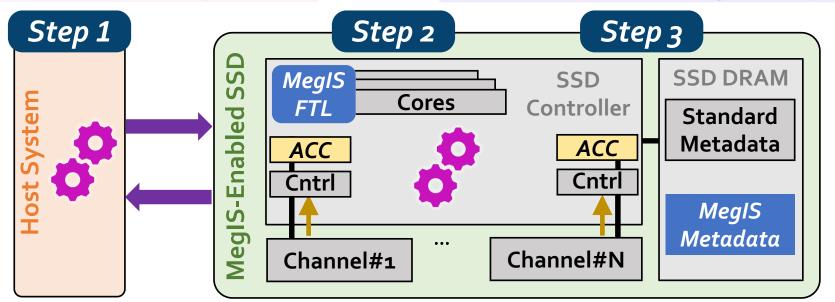
MegIS Hardware-Software Co-Design

Task partitioning and mapping

• Each step executes in its most suitable system

Data/computation flow coordination

- Reduce communication overhead
 - Reduce #writes to flash chips



Storage-aware algorithms

• Enable efficient access patterns to the SSD

Lightweight in-storage accelerators

 Minimize SRAM/DRAM buffer spaces needed inside the SSD

Data mapping scheme and Flash Translation Layer (FTL)

- Specialize to the characteristics of metagenomic analysis
 - Leverage the SSD's full internal bandwidth

Outline

Background

Motivation and Goal

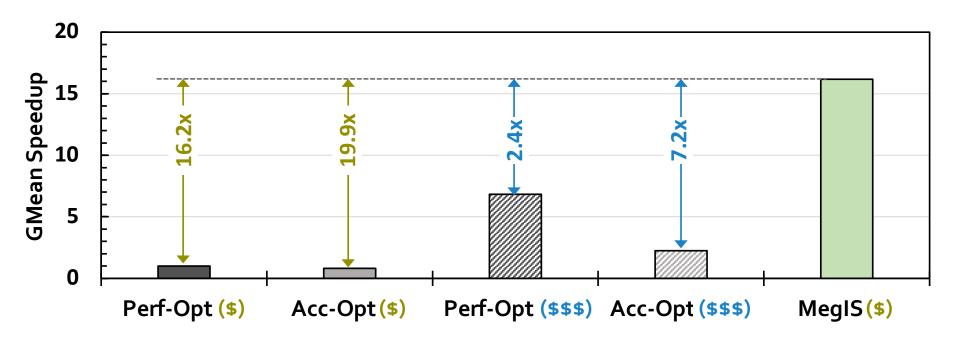
MeglS

Evaluation

Conclusion

System Cost-Efficiency

- Cost-optimized system (\$): With SSD-C and 64-GB DRAM
- Performance-optimized system (\$\$\$): With SSD-P and 1-TB DRAM



MegIS outperforms the baselines even when running on a much less costly system

MegIS

High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing

https://arxiv.org/abs/2406.19113

SAFARI

Outline

Brief Intro to (Meta)Genomics

- Storage-Centric Designs for (Meta)Genomics
 - GenStore
 - MegIS

Conclusion

Specializing the Storage System for Genomics & Metagenomics

Can Provide Large Benefits

Specializing the Storage System

for Genomics & Metagenomics

Storage-centric designs
improve system cost-efficiency
and makes accurate (meta)genomics
more accessible for wider adoption

(Co-)Optimizing Algorithm-Architecture-Device is Critical

Computer Architecture (Expanded View)

Problem
Algorithm
Program/Language
System Software
SW/HW Interface
Micro-architecture
Logic
Devices
Electrons

More About My Research

My Website:

https://bit.ly/nikamgh

Ultra-Dense 3D Memory Systems

PACT SRC'24

Works Described in This Talk		GenStore ASPLOS'22		MegIS ISCA'24		
Near-Data Processing (Other Works)	ALP IEEE TETC'22		CODIC ISCA'21		SIMDRAM ASPLOS'21	
Optimizing Memory and Storage Systems	Venice ISCA'23	FIGARO MICRO'20	CROW ISCA'19	CAL MICRO'18	FLIN ISCA'18	
Algorithms	MLA ISMB'24	RawHash ISMB'23	BLEND Bioinformatics'23		TargetCall APBC'23	
Algorithm-Architecture Co-Design	Scrooge Bioinformatics'23		SeGraM ISCA'22		SMASH MICRO'19	
Dovice Architecture	Understanding and Modeling					
Device-Architecture	Understanding and Wodeling					

Co-Design

Storage-Centric Computing for Genomics and Metagenomics

Nika Mansouri Ghiasi

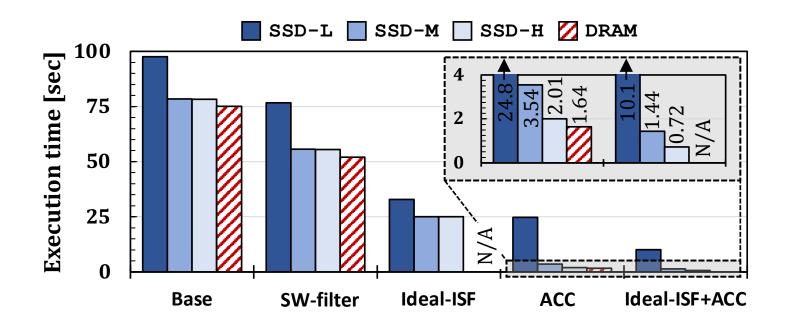
n.mansorighiasi@gmail.com

Backup Slides

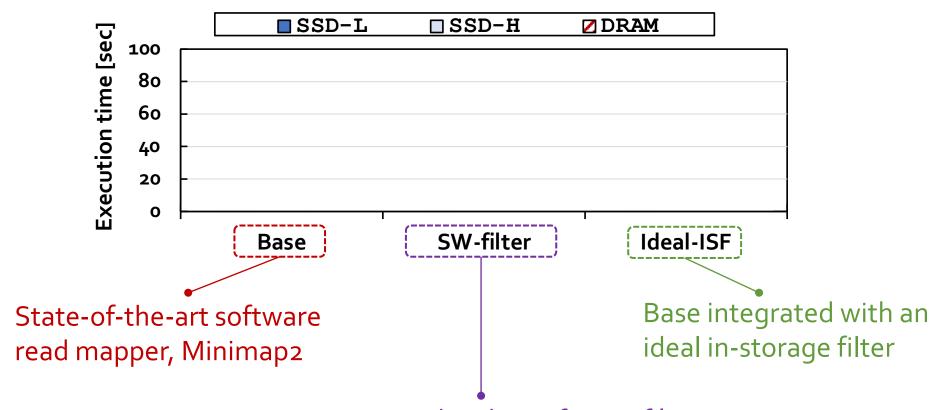
End-to-End Workflow of Genome Sequence Analysis

- There are three key initial steps in a standard genome sequencing and analysis workflow
 - Collection, preparation, and sequencing of a DNA sample in the laboratory
 - Basecalling
 - Read mapping
- Genomic read sets can be obtained by
 - Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine
 - Downloading read sets from publicly available repositories and storing them into an SSD
- We focus on optimizing the performance of read mapping because sequencing and basecalling are performed only once per read set, whereas read mapping can be performed many times
 - Analyzing the differences between a reads from an individual and many reference genomes of other individuals
 - Repeating the read mapping step many times to improve the outcome of read mapping
- Improving read mapping performance is critical in almost all genomic analyses that use sequencing
 - 45% of the execution time when discovering sequence variants in cancer genomics studies
 - 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read

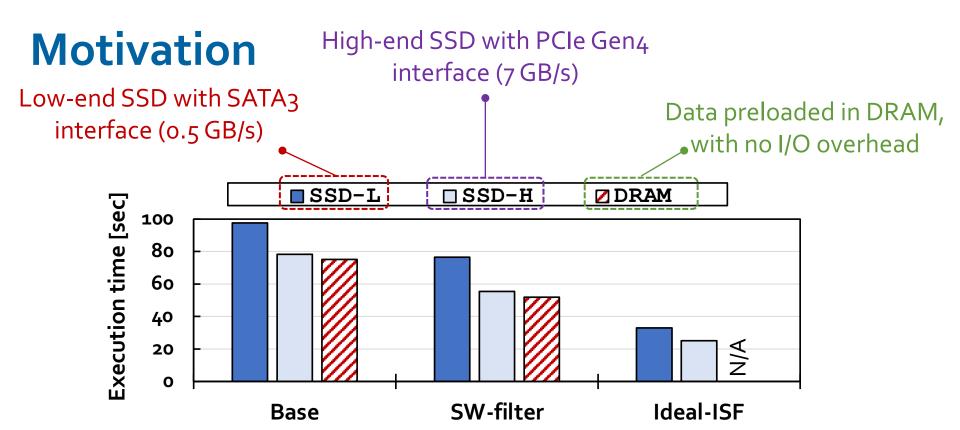
Motivation



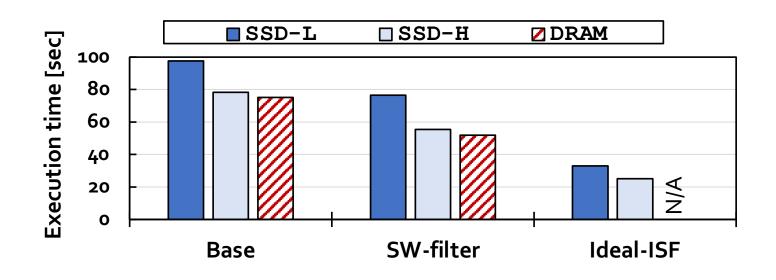
Motivation



Base integrated with a software filter that prunes **80%** of exactly-matching reads



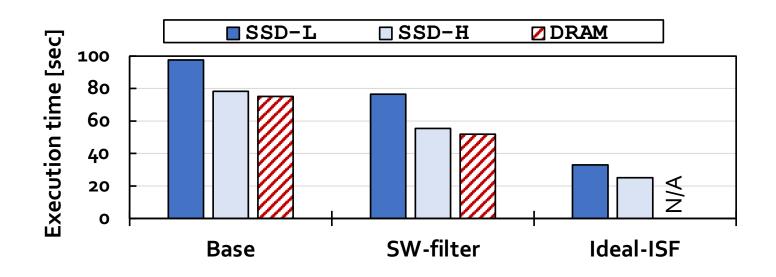
Benefits of Ideal In-Storage Filter



The ideal in-storage filter significantly improves performance by

- 1) Reducing computation overhead
- 2) Reducing data movement overhead

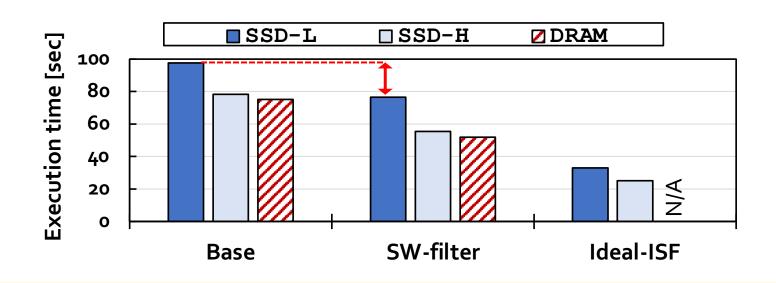
Overheads of Software Mappers



I/O has a significant impact on application performance

which can be alleviated at the cost of expensive storage devices and interfaces

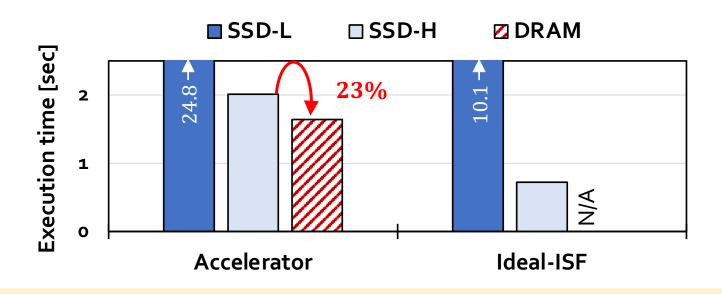
Overheads of Software Mappers



SW-filter provides limited benefits compared to Base

The filtering process outside the SSD must compete with the read mapping process for the resources in the system

Overheads of Hardware Mappers



Even the high-end SSD does not fully alleviate the storage bottleneck

The ideal in-storage filter significantly improves performance

Ideal-OSF

• Execution time of an ideal in-storage filter:

$$T_{\text{Ideal-ISF}} = T_{\text{I/O-Ref}} + \max \{T_{\text{I/O-Unfiltered}}, T_{\text{RM-Unfiltered}}\}$$

- Execution time of an ideal outside-storage filter:
 - 60% slower than Ideal-ISF in our analysis

$$T_{\text{Ideal-OSF}} = T_{\text{I/O-Ref}} + \max \{T_{\text{I/O-All-Reads}}, T_{\text{RM-Unfiltered}}\}$$

Comparison to PIM

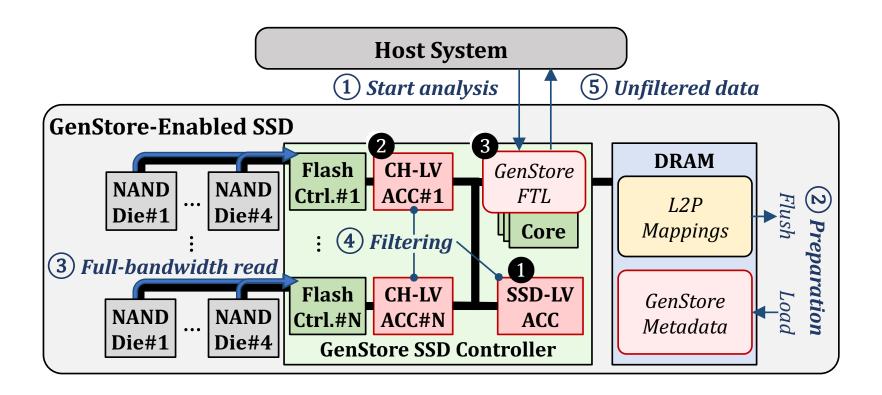
- Even though read mapping applications could also benefit from other near-data, in-storage processing can fundamentally address the data movement problem by filtering large, low-reuse data where the data initially resides.
- Even if an ideal accelerator achieved a zero execution time, there would still exist the need to bring the data from storage to the accelerator.
 - 2.15x slower than the execution time that Ideal-ISF+ACC provides in our motivational analysis

In-storage filter can be integrated with any read mapping accelerator, including PIM accelerators, to alleviate their data movement overhead.

Long Read Use Cases

Use case	Input read set (Short/Long)	Size [GB]	Reference	Align [%]
Sequencing errors	ERR3988483 (L) [157] HG002_ONT_20200204 (L) [158]	54 371	hg38 [144]	47.4 69.3
Rapidly evolving samples	SRR5413248 (L) [157] SRR12423642 (S) [157]	1.69 0.466	NZ_NJEX02 [159] NC_045512.2 [160]	60.0 23.1
No reference	SRR6767727 (L) [157] SRR9953689 (L) [157]	12.4 15.9	NZ_NJEX02 [159]	0.35 37.0
Contamination	SRR9953689 (L) [157]	15.9	hg38 [144]	1.0

FTL



FTL: Metadata

- GenStore metadata includes the mapping information of the data structures necessary for read mapping acceleration
- In accelerator mode, GenStore also keeps in internal DRAM other metadata structures of the regular FTL
 - Examples include the page status table and block read counts which need to be updated during the filtering process
- We carefully design GenStore to only sequentially access the underlying NAND flash chips while operating as an accelerator
 - Requires only a small amount of metadata to access the stored data

FTL: Data Placement

- GenStore needs to properly place its data structures to enable the full utilization of the internal SSD bandwidth
- When each data structure is initially written to the SSD, GenStore sequentially and evenly distributes it across NAND flash chips
- GenStore can specify the physical location of a 30-GB data structure by maintaining only the list of 1,250 (30 GB/24 MB) physical block addresses
- It significantly reduces the size of the necessary mapping information from 300 MB (with conventional 4-KiB page mapping) to only 5 KB (1,250 4 bytes)

FTL: SSD Management Tasks

- In accelerator mode, GenStore only reads data structures to perform filtering, and does not write any new data
 - GenStore does not require any write-related SSD-management tasks such as garbage collection and wear-leveling
- The other tasks necessary for ensuring data reliability can be done before or after the filtering process
 - GenStore significantly limits the amount of data whose retention age would exceed the manufacturer-specified threshold since GenStore's filtering process takes a short time.
 - GenStore-FTL can easily avoid read disturbance errors for data with high read counts since GenStore sequentially reads NAND flash blocks only once during filtering

Data Sizes

 Conventional k-mer index in Minimap2 + reference genome: 7 GB (k = 15)

• Read-sized k-mer index before optimization: 126 GB (k= 150)

• Read-sized k-mer index after optimization: 32 GB (k = 150)

SSD Specs

- SSD-L: SATA3 interface (0.5 GB/s sequential read)
 - 1.2 GB/s per channel bandwidth
 - 8 channels
- **SSD-L:** PCle Gen₃ M.₂ interface (3.5 GB/s sequential read)
 - 1.2 GB/s per channel bandwidth
 - 16 channels
- SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
 - 1.2 GB/s per channel bandwidth
 - 16 channels

Evaluation Methodology

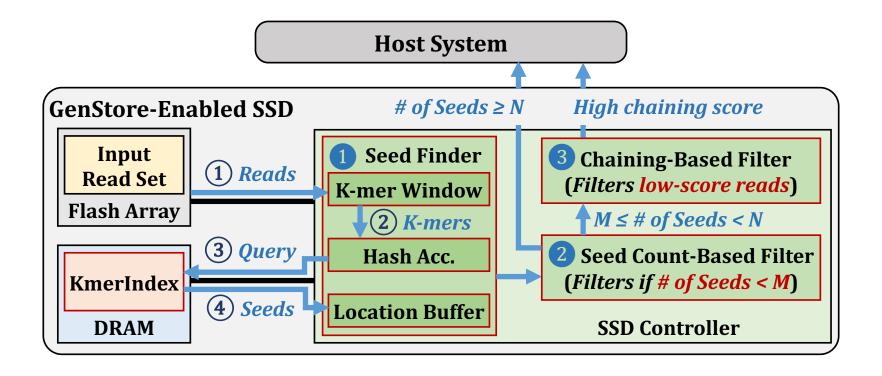
Performance modeling

- Ramulator for DRAM timing
- MQSim for SSD timing
- We model the end-to-end throughput of GenStore based on the throughput of each GenStore pipeline stage
 - Accessing NAND flash chips
 - Accessing internal DRAM
 - Accelerator computation
 - Transferring unfiltered data to the host

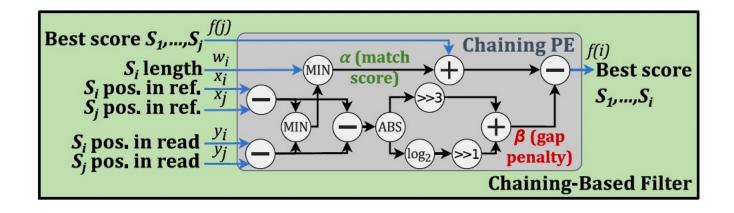
Real system results

- AMD EPYC 7742 CPU
- 1TB DDR4 DRAM
- AMD μProf

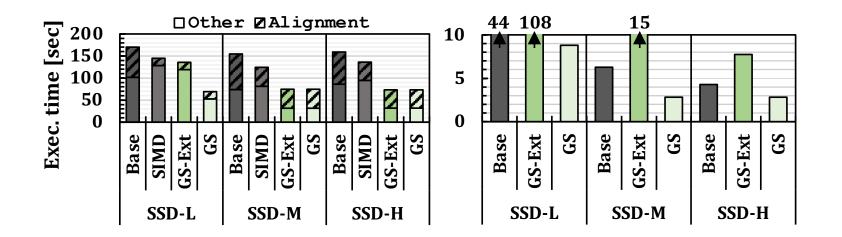
GenStore-NM



Chaining Processing Element



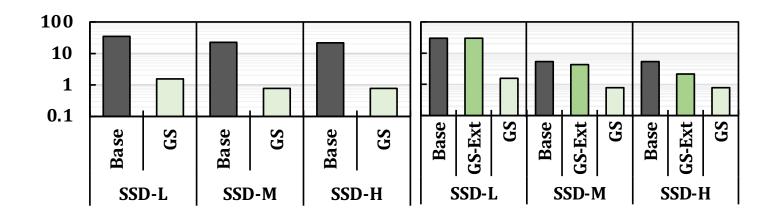
GenStore-EM



GS-Ext provides significant performance improvements over both Base and SIMD in SSD-M and SSD-H.

GS-Ext provides limited benefits over SIMD in SSD-L due to low external I/O bandwidth.

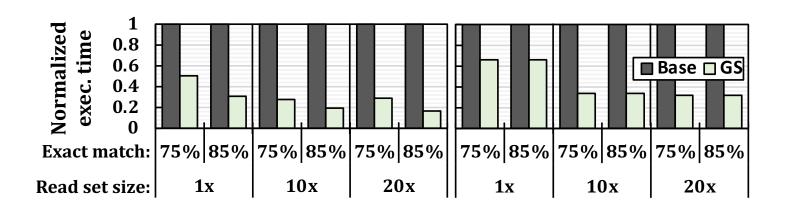
GenStore-NM



GS-Ext performs significantly slower than Base (2.28x - 1.91x) on all systems.

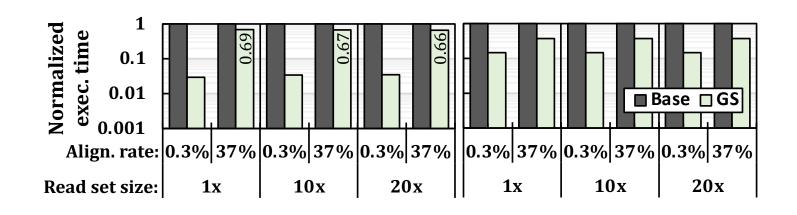
Effect of Inputs on GenStore-EM

$$DM_Saving = \frac{Size_{Ref} + Size_{ReadSet}}{Size_{Ref} + Size_{ReadSet} \times (1 - Ratio_{Filter})}$$



Effect of Inputs on GenStore-NM

$$DM_Saving = \frac{Size_{Ref} + Size_{ReadSet}}{Size_{Ref} + Size_{ReadSet} \times (1 - Ratio_{Filter})}$$

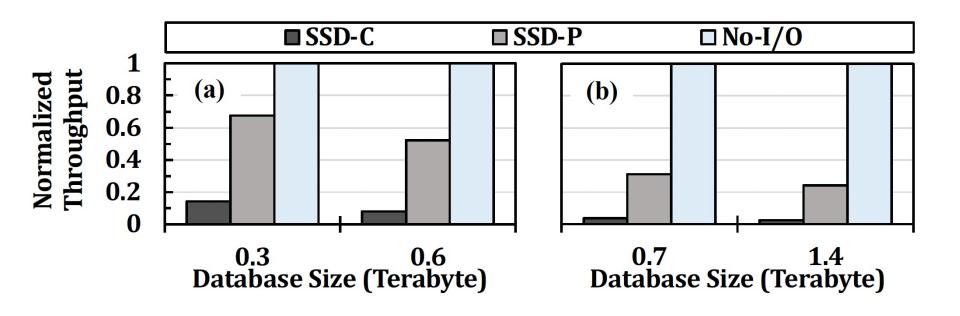


MegIS Backup Slides

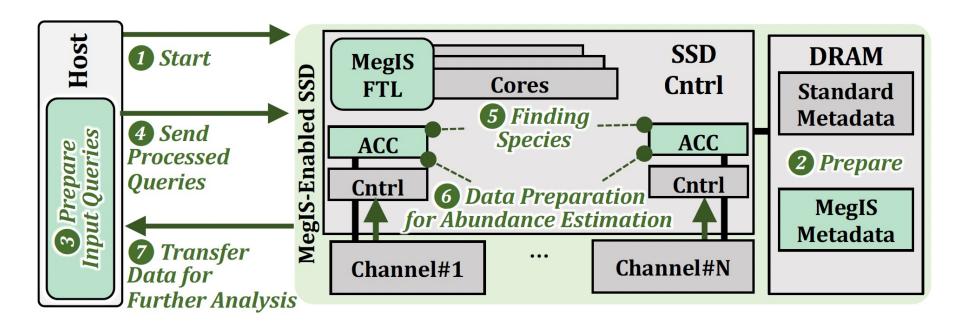
Motivational Analysis

Database access patterns

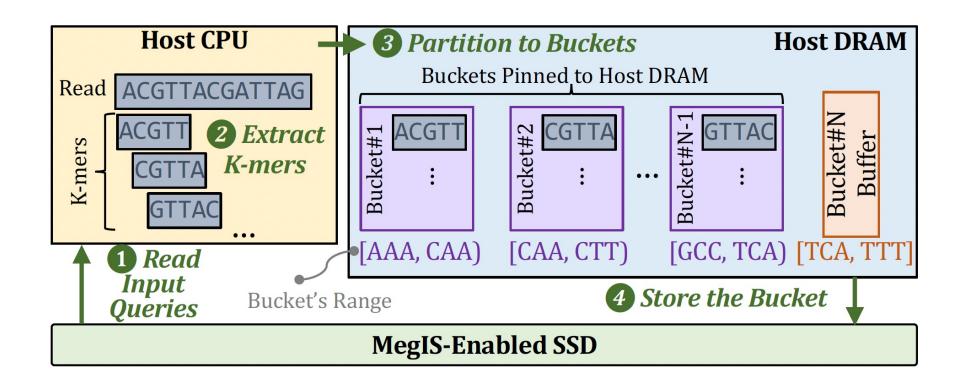
- (a) Random Query
- (b)Streaming Query



Overview of MegIS's Steps



More Details on Step 1



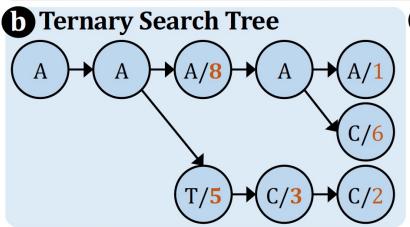
K-mer Sketch Data Structures

a Baseline K-mer Sketch Tables

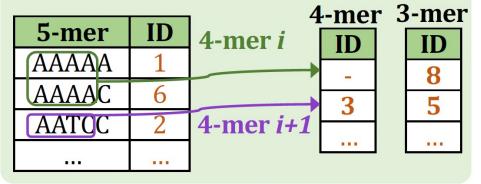
5-mer	ID
AAAAA	1
AAAAC	6
AATCC	2

4-mer	ID		
AAAA	1,6		
AATC	2, 3		

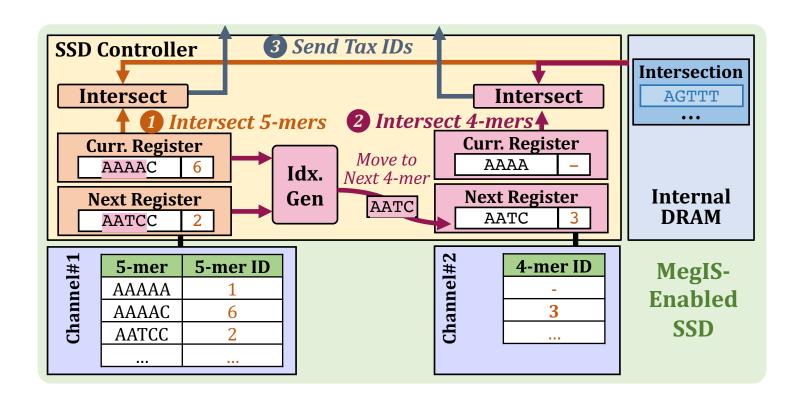
3-mer	ID	
AAA	1, 6, 8	
AAT	2,3, 5	



c K-mer Sketch Streaming Tables



K-mer Sketch Streaming Hardware Design



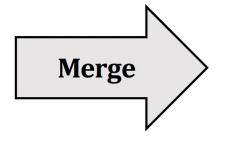
Index Generation in Step 3

K-mer	Loc.		
ATT	14		
CCA	9		
GCT	5		

Reference Index **Organism A**

K-mer	Loc.
AAG	2
CCA	21
TGC	4

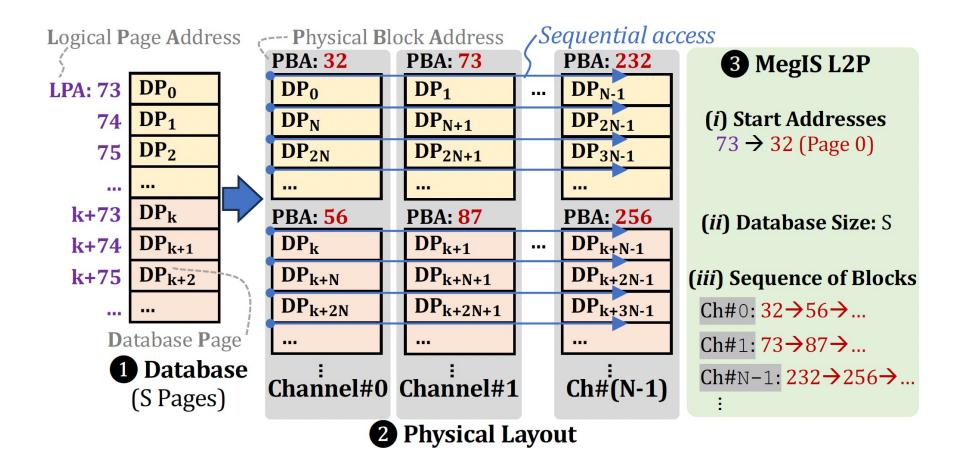
Reference Index



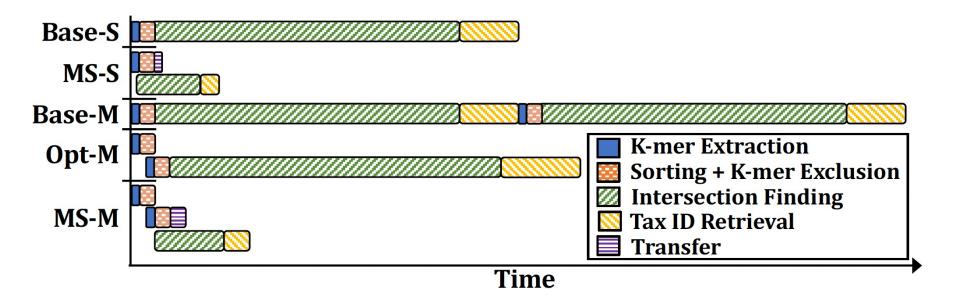
Unified Organism B Reference Index

K-mer	Loc.
AAG	1002
ATT	14
CCA	9, 1021
GCT	5
TGC	1004

MegIS FTL



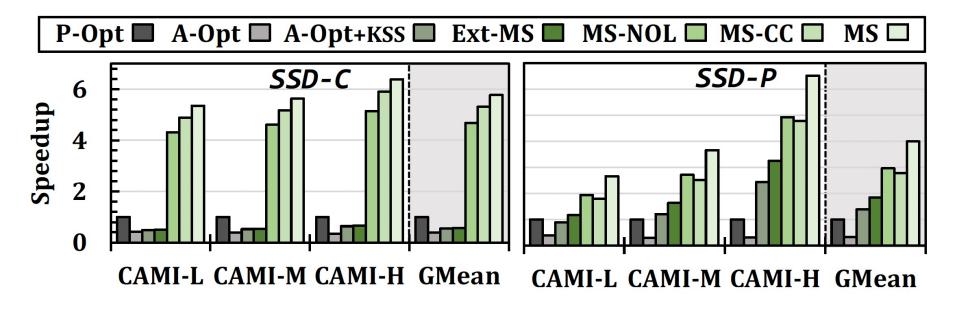
Multi-Sample Analysis



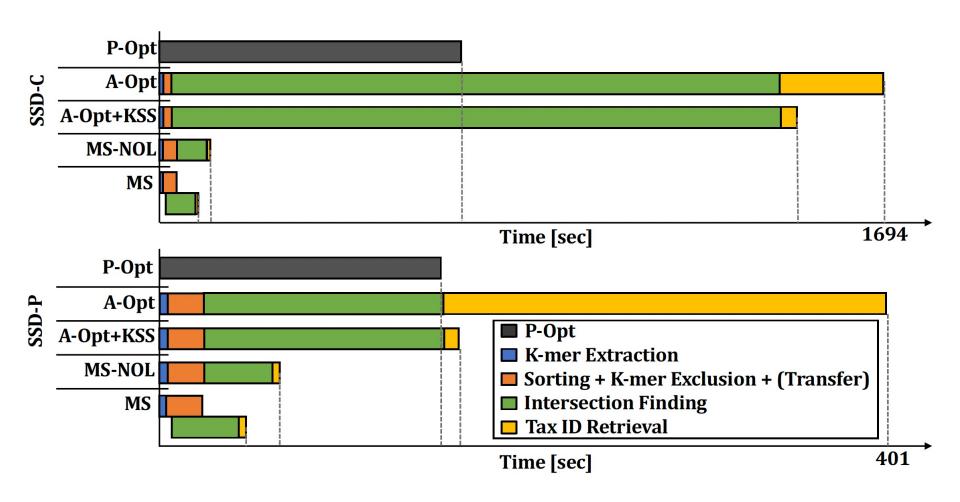
SSD Configurations

Specification	SSD-C	SSD-P		
General	48-WL-layer 3D TLC NAND flash-based SSD 4 TB capacity, 4 GB internal LPDDR4 DRAM [226]			
Bandwidth (BW)	600 MB/s interface BW (SATA3); 560 MB/s sequential-read BW 1.2-GB/s channel I/O rate	8 GB/s interface BW (4-lane PCIe Gen4); 7 GB/s sequential-read BW 1.2-GB/s channel I/O rate		
NAND Config	8 channels, 8 dies/channel, 4 planes/dies, 2,048 blocks/plane, 196 WLs/block, 16 KiB/page (4/8/16 channels in Fig. 17)	16 channels, 8 dies/channel, 2 planes/dies, 2,048 blocks/plane, 196 WLs/block, 16 KiB/page (8/16/32 channels in Fig. 17)		
Latencies	Read (tR): 52.5 μ s, Program (tPROG): 700 μ s			
Embedded Cores	3 ARM Cortex-R4 cores [86]	4 ARM Cortex-R4 cores [86]		

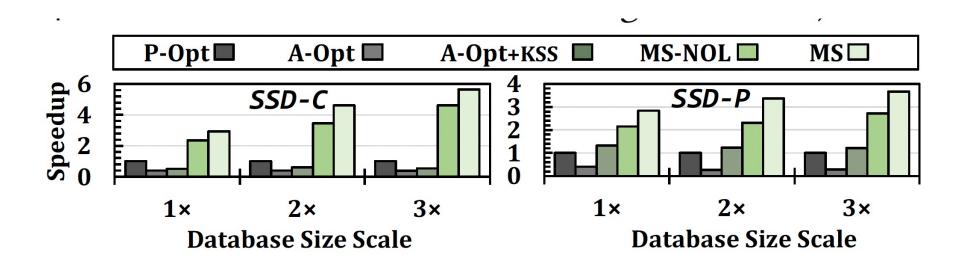
Impact of Different Optimizations



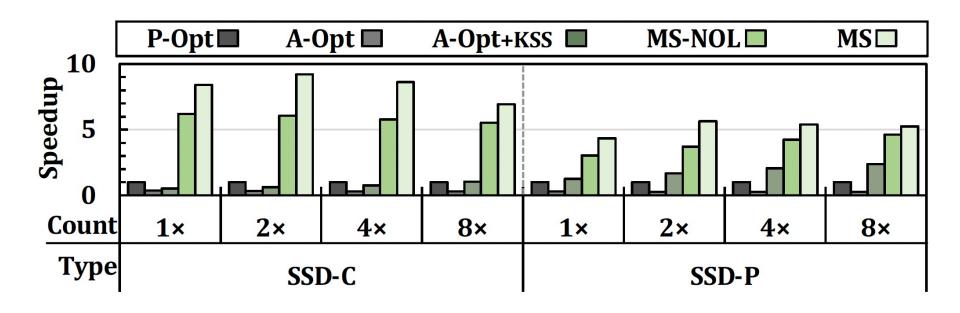
Impact of Different Optimizations



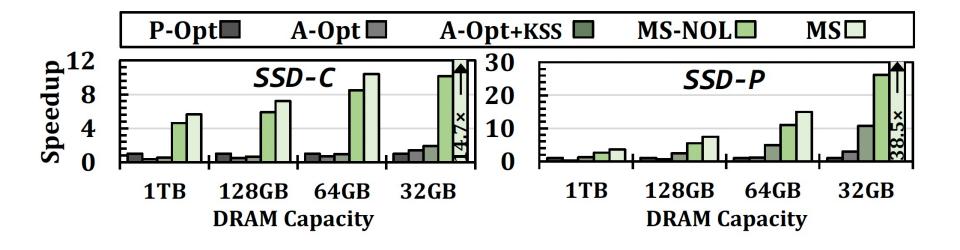
Speedup with Different Database Sizes



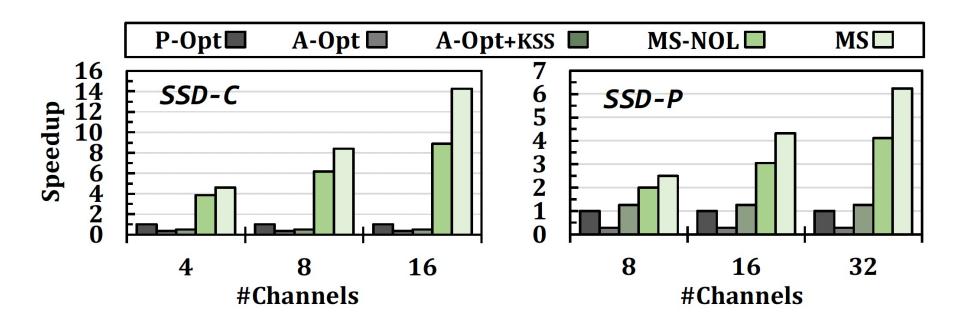
Speedup with Different #SSDs



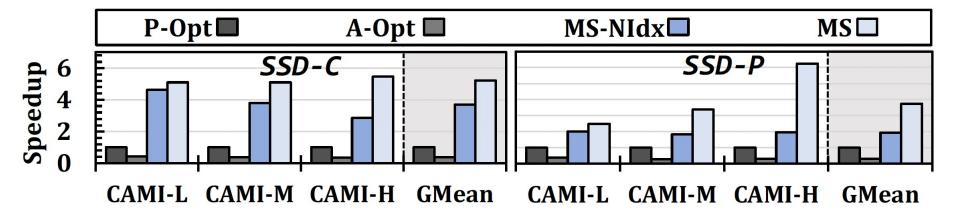
Speedup with Different Main Memory Capacities



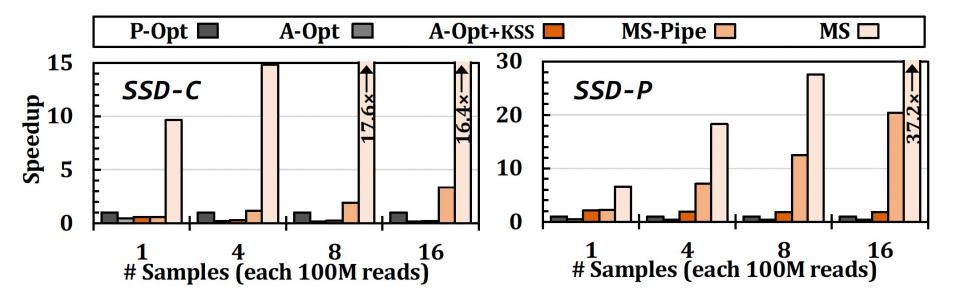
Speedup with Varying SSD Internal Bandwidth



Speedup of Abundance Estimation



Multi-Sample Use Case



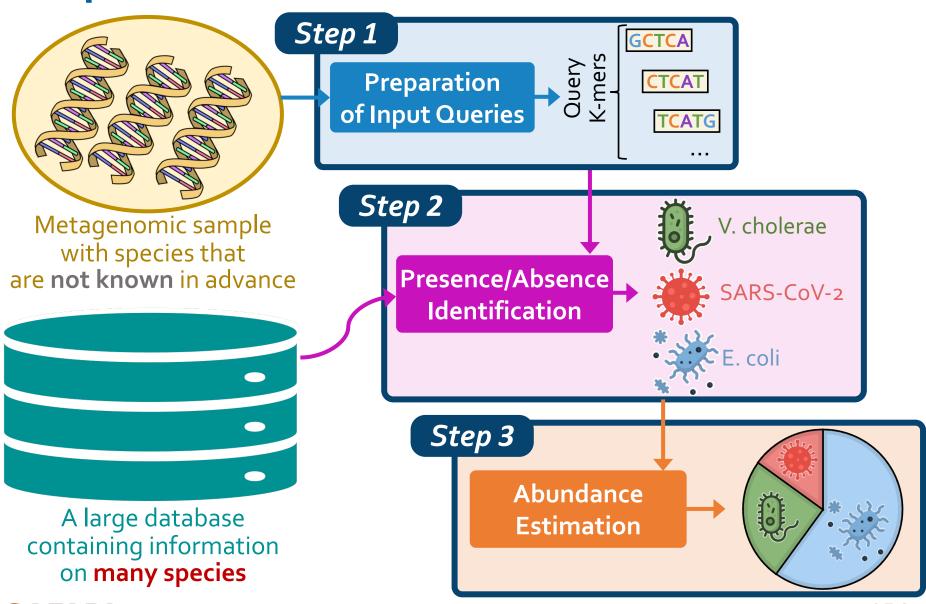
Area and Power

 Based on synthesis of MegIS accelerators using the Synopsys Design Compiler @ 65nm technology node

Logic Unit	# of instances	Area [mm²]	Power [mW]
Intersect (120-bit)	1 per channel	0.001361	0.284
k-mer Registers (2 x 120-bit)	1 per channel	0.002821	0.645
Index Generator (64-bit)	1 per channel	0.000272	0.025
Control Unit	1 per SSD	0.000188	0.026
Total for an 8-channel SSD	-	0.04	7.658

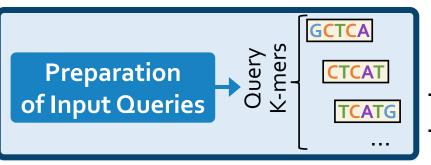
Only 1.7% of the area of three 28-nm ARM Cortex R4 cores in a SATA SSD controller

Step 1 Overview



SAFARI

Step 1 Overview



MegIS employs **sorted data structures** to avoid expensive random accesses to the SSD

- Extract k-mers from the sample
- **Sort** the k-mers (database is sorted offline)

MegIS executes Step 1 in the host system

- Benefits from larger DRAM and more powerful computation
- Incurs fewer writes to NAND flash chips (than processing this step in the SSD)
- Enables overlapping Step 1 with Step 2

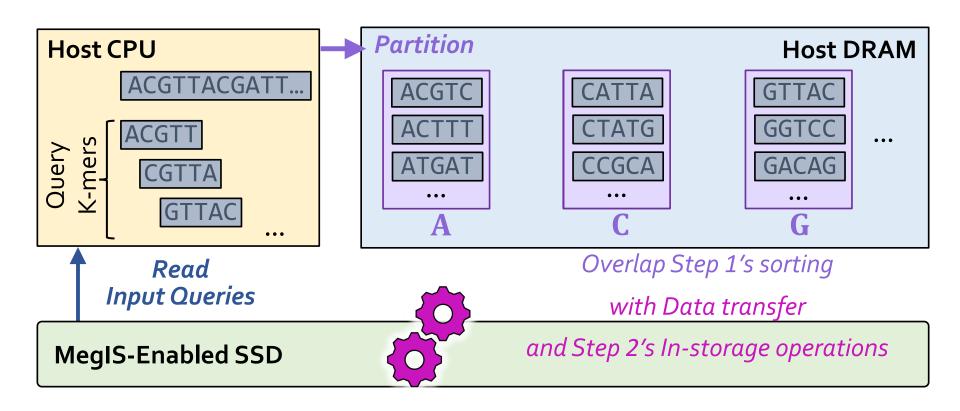
To execute Step 1 efficiently in the host system, MegIS needs to:

- Avoid significant overhead due to data transfer time between the steps
- Minimize performance and lifetime overheads even when host DRAM cannot hold all query k-mers

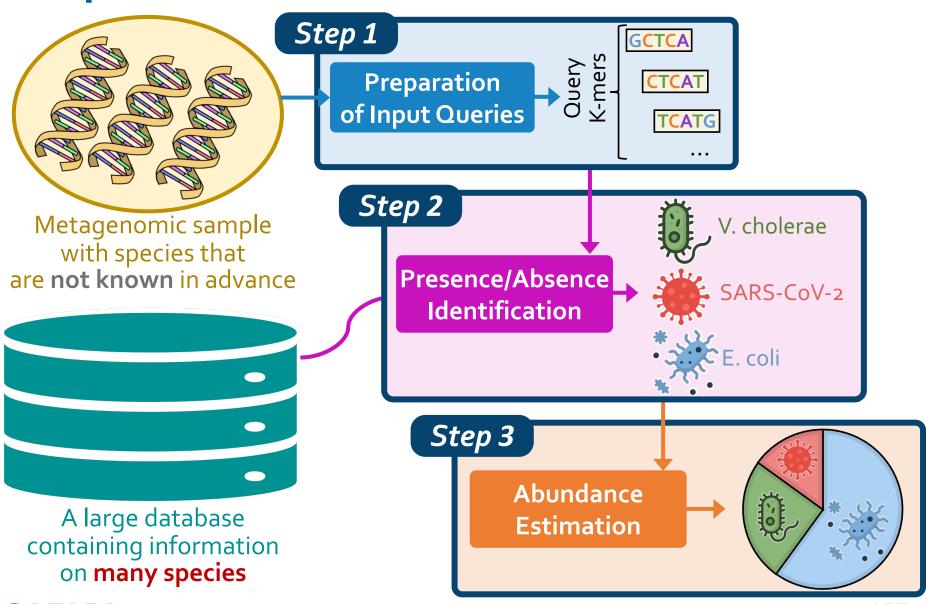
Step 1 Design

Divide k-mers into independent partitions by their alphabetical range

Can overlap operations on different partitions

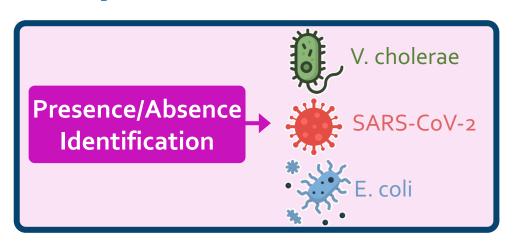


Step 2 Overview



SAFARI

Step 2 Overview



- Identify the common k-mers between the <u>query k-mers</u> and the <u>database k-mers</u>
- Retrieve the species IDs
 of the common k-mers

SSD MegIS executes Step 2 in the SSD

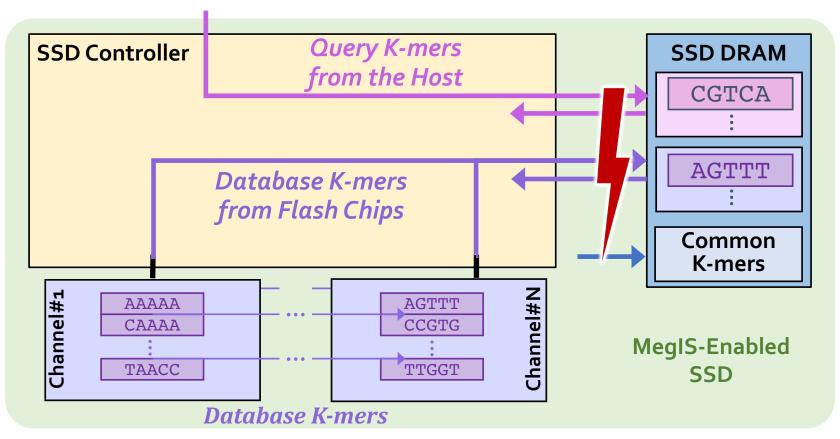
- Accesses large data with low reuse
- Involves lightweight computation

To execute Step 2 efficiently in the SSD, MegIS needs to:

- Leverage internal bandwidth efficiently
- Not require expensive hardware inside the SSD
 (e.g., large DRAM bandwidth/capacity and costly logic units)

Step 2 Design: Identifying the Common K-mers

<u>Challenge</u>: Limited internal DRAM bandwidth

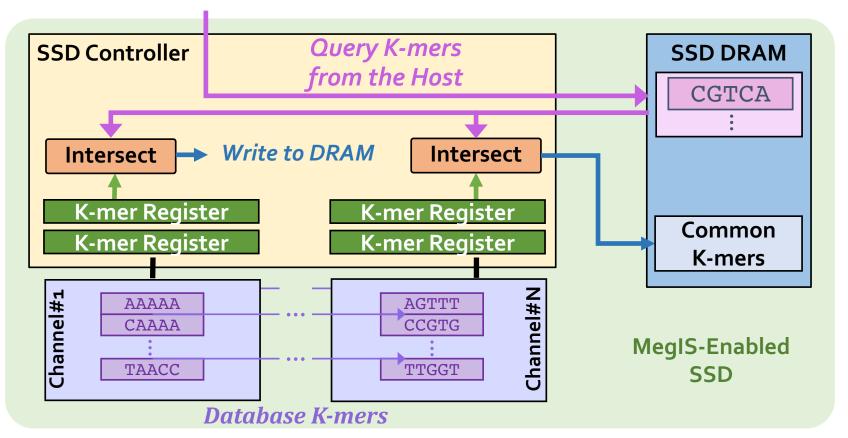


Step 2 Design: Identifying the Common K-mers

• **Challenge:** Limited internal DRAM bandwidth

Compute directly on the flash data streams [Zou+, MICRO'22]

Reduce buffer size based on application features

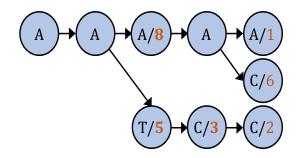


Step 2 Design: Retrieving the Species ID

 MegIS retrieves the species IDs of the common k-mers by looking up a sketch database

K-mer	
AAAAA	
AAAAC	
AATCC	
•••	·

Space-Inefficient



Space-Efficient

X Slow inside the SSD due to long NAND flash latency

Step 2 Design: Retrieving the Species ID

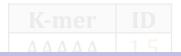
 MegIS retrieves the species IDs of the common k-mers by looking up a sketch database

K-mer	ID	$A \rightarrow A \rightarrow A/8 \rightarrow A/1$
AAAAA	1,5	
AAAAC	6	C/6
AATCC	2, 9	$(T/5) \rightarrow (C/3) \rightarrow (C/2)$
Space-Inef	ficient	Space-Efficient
7.5x Smaller		2.1× Larger
		K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing due to its streaming accesses

Step 2 Design: Retrieving the Species ID

 MegIS retrieves the species IDs of the common k-mers by looking up a sketch database



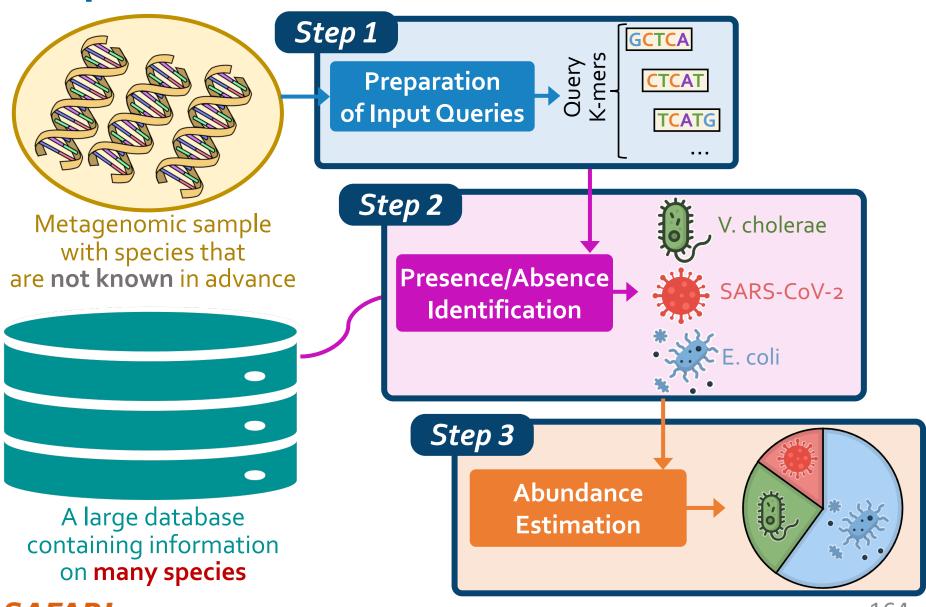
Design details are in the paper

7.5x Smaller

K-mer Sketch Streaming

K-mer Sketch Streaming is much more suitable for in-storage processing due to its streaming accesses

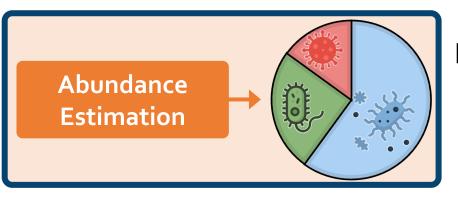
Step 3



SAFARI

164

Step 3



MegIS performs additional analysis on species identified in the sample to estimate their abundance

MegIS can flexibly integrate with different approaches

- 1. Lightweight statistical approaches: Directly uses the output of Step 2
- 2. More accurate and costly read mapping: MegIS facilitates integration by preparing mapping indexes in the SSD

K-mer	Loc.	K-mer	Loc.		K-mer	Loc.
ATT	14	AAG	2		AAG	1002
CCA	9	CCA	21	Merge	ATT	14
GCT	5	TGC	4		CCA	9, 1021
		:		V	GCT	5
Reference	e Index	Reference	e Index	Unified	TGC	1004
Organis	sm A	Organi	sm B	Reference Index	•••	

Step 3 and MegIS FTL are in the paper